Abstract

The shale has ultra-low permeability wherein multi-scale natural fractures are well-developed. The success of providing high diversion channels makes multi-stage fractured horizontal wells (MFHWs) become the powerful technique for economically producing gas from shale.This study presents a triple-continuum and discrete fracture model to describe a fractured shale reservoir embedded with a MFHW. The model incorporates non-equilibrium desorption/adsorption mechanism (NEDAM), viscous flow, Knudsen diffusion, and surface diffusion. The discrete fracture networks (DFNs) is quantitatively constructed according to the fracture density and stimulated reservoir area (SRA). This model is used to analyze the temporal/spatial evolution of the gas pressure and the net desorption rate. NEDAM is compared with the conventional equilibrium desorption mechanism (EDM) and it's found that NEDAM uncovers the delayed phenomenon during gas desorption, and the use of EDM overestimates the production contributed from the adsorbed gas. The maximum net desorption rate of adsorbed gas gradually spread from the SRA region to the non-SRA region. The complete flow stages are clearly interpreted in a semi-logarithmic curve of well testing, and the flow stage controlled by the hydraulic fractures is clearly presented. Finally, the instructions on hydraulic fracturing treatment are given based on the production analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.