Abstract

SUMMARYThe loss of 14C ethanolamine‐ and 3H choline‐labelled phospholipids from rat liver during tissue preparation for electron microscopy has been examined. Column and thin‐layer chromatography combined with double‐label scintillation spectrometry were used to analyse the radioactive phospholipid content of the livers of rats injected simultaneously with 14C aminoethanol and 3H choline chloride. After 4 h (in vivo) the 14C and 3H labels were mainly incorporated into phosphatidyl ethanolamine and phosphatidyl choline respectively but some 14C label had been incorporated into phosphatidyl choline. Chopped rat liver was fixed in glutaraldehyde or osmium tetroxide or both sequentially and tissues were dehydrated in ethanol and embedded in Araldite. In each procedure examined the choline label proved more labile than the ethanolamine. After glutaraldehyde fixation alone complete loss of phosphatidyl choline occurred and half of the phosphatidyl ethanolamine was also lost. Following osmium tetroxide fixation negligible loss of either phosphatide occurred. In terms of phospholipid retention, no advantage was gained by glutaraldehyde fixation prior to osmium tetroxide fixation. The results show that both ethanols and embedding monomers are potent phospholipid solvents. The data also suggests that EM autoradiography of these two phosphatides may be carried out with reasonable confidence although it must be pointed out that a high degree of retention does not necessarily imply retention in situ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.