Abstract
To investigate the influence of roasting time and temperature on the degradation of the bitter precursors 3-O-caffeoyl quinic acid (1), 5-O-caffeoyl quinic acid (2), and 4-O-caffeoyl quinic acid (3) as well as the formation of bitter tastants during coffee roasting, we prepared coffee brews from beans roasted either at 260 degrees C for 60-600 s or for 240 s at 190-280 degrees C. By means of HPLC-UV/vis and HPLC-MS/MS, bitter-tasting monocaffeoyl quinides (4-8), dicaffeoyl quinides (9-11), and 4-vinylcatechol oligomers (12-20) as well as the parent bitter precursors 1-3 were quantitatively analyzed in these brews. Quinides 4-11, exhibiting a coffee-typical bitter taste profile, were found to be preferentially formed under slight to medium roasting degrees and were observed to be degraded again to generate harsh bitter-tasting 4-vinylcatechol oligomers under more severe roasting conditions, thus matching the change in bitter taste quality observed by means of sensory studies. In addition, quantitative studies of the release profile of bitter compounds from ground coffee upon water percolation revealed that compounds 1-8 were rapidly extracted, dicaffeoyl quinides 9-11 were released rather slowly, and, in particular, compounds 12-17 were found to show strong retention to the ground coffee material. These data imply that the knowledge-based control of the roasting and/or the extraction conditions might be helpful in tailoring the bitter taste signature of coffee beverages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.