Abstract

This technical note studies quantitatively asymptotic growth behaviors of trajectories (AGBT) of nonlinear autonomous discrete dynamical system that has unbounded domain, non-Lipschitz continuous nonlinear operator, and stable or unstable equilibrium point. We explain how trajectory motion speed is quantitatively determined in the system, and study exact computation and sharp estimation of the smallest exponential bound of trajectories. We characterize exponential stability and asymptotic stability of the system from a new point of view, and provide a simple condition to distinguish them from each other. These results extend existing results that were obtained in some special cases of the system, and are helpful for quantitative analysis and understanding of AGBT of the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.