Abstract

Optical tweezers are a versatile tool in biophysics and have matured from a tool of manipulation to a tool of precise measurements. We argue here that the data analysis with advantage can be developed to a level of sophistication that matches that of the instrument. We review methods of analysis of optical tweezers data, primarily based on the power spectra of time series of positions for trapped spherical objects. The majority of precise studies in the literature are performed on in vitro systems, whereas in the present work, an example of an in vivo system is presented for which precise power spectral analysis is both useful and necessary. The biological system is the cytoplasm of fission yeast, Schizosaccharomyces pombe in which we observe subdiffusion of lipid granules. In a search for the cause of subdiffusion, we chemically disrupt the actin network in the cytoplasm and further consider in vitro networks of filamenteous actin undergoing similar chemical disruption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.