Abstract
Prediction of toxicity of 203 nitro- and cyano-aromatic chemicals to Tetrahymena pyriformis was carried out by radial basis function neural network, general regression neural network and support vector machine, in non-linear response surface methodology. Toxicity was predicted from hydrophobicity parameter (log Kow) and maximum superdelocalizability (Amax). Special attention was drawn to prediction ability and robustness of the models, investigated both in a leave-one-out and 10-fold cross validation (CV) processes. The influence that the corresponding changes in the learning sets during these CV processes could have on a common external test set including 41 compounds was also examined. This allowed us to establish the stability of the models. The non linear results slightly outperform (as expected) multilinear relationships (MLR) and also favourably compete with various other non linear approaches recently proposed by Ren (J. Chem. Inf. Comput. Sci., 43 1679 (2003)). § Presented at CMTPI 2005: Computational Methods in Toxicology and Pharmacology Integrating Internet Resources (Shanghai, China, October 29–November 1, 2005).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.