Abstract

Linear solvation energy relationship (LSER) amended by the introduction of a molecular electronic factor was employed to establish quantitative structure-retention relationship of biopartitioning micellar chromatography (BMC) system. The chromatographic indices, log k, were determined by LC on a C18 column for sixty-five structurally diverse compounds, including neutral (32), acidic (19) and basic (14) compounds. Two micellar mobile phases composed of 0.04 mol L−1 polyoxyethylene (23) lauryl ether (Brij35) were adjusted by phosphate buffer to pH 7.4 and pH 6.5, respectively. When the mean net charge per molecule (δ) was introduced into LSER as the sixth variable, the LSER regression coefficients and predictive capability were significantly improved. However, the δ coefficients of the amended LSER were quite different for acidic and basic compounds, indicating that the molecular electronic factor had a markedly different impact on the retention of acidic and basic compounds in the studied BMC system. This may attribute to the extra interaction for ionized compounds with the free silanol groups in the stationary phase. The comparison of calculated and experimental retention indices suggested that the amended LSER could reproduce adequately the retention of the structurally diverse solutes investigated in BMC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call