Abstract

The relationship between the chemical structure, first reduction and oxidation potentials of 30 Phenylquinolinylethyne (PhQE), and Phenylisoquinolinylethyne (PhIE) derivative compounds has been elucidated employing ab initio calculations. Quantum chemical calculations (HF/6-31G) were carried out to obtain: the optimized geometry, energy levels, quantum chemical indices, charges and dipole moments of these compounds. The quantitative structure–property relationship (QSPR) of PhQE and PhIE was studied for the first reduction ( E red), and the first oxidation ( E ox) potentials. The genetic algorithm (GA) was applied to select the variables that resulted in the best-fit models. After the variable selection, multiple linear regression (MLR) was utilized to construct linear QSPR models. The resulting QSPR equations indicated that the orbital energies, quantum chemical indices ( i.e. electronegativity and softness) and localization of charge in molecules are important factors in the first oxidation and reduction potentials of PhQE and PhIE. The quantum-chemical calculations show that the HOMO and LUMO of both PhQE and PhIE derivatives are localized on the donor-substituted phenyl moiety, and the quinolinyl and isoquinolinyl acceptor moiety respectively. Thus, it was proposed that the first reduction and oxidation potentials can be ascribed to reduction at the quinolinyl acceptor moiety, and oxidation at the donor-substituted phenyl moiety.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.