Abstract

Ionic liquids (ILs) are considered as a group of very promising compounds due to their excellent properties (practical non-volatility, high thermal stability and very good and diverse solving capacity). The ILs have a good prospect of replacing traditional organic solvents in vast variety of applications. However, the complete information on their environmental impact is still not available. There is also an enormous number of possible combinations of anions and cations which can form ILs, the fact that requires a method allowing the prediction of toxicity of existing and potential ILs. In this study, a group contribution QSAR model has been used in order to predict the (eco)toxicity of protic and aprotic ILs for five tests (Microtox®, Pseudokirchneriella subcapitata and Lemna minor growth inhibition test, and Acetylcholinestherase inhibition and Cell viability assay with IPC-81 cells). The predicted and experimental toxicity are well correlated. A prediction of EC50 for these (eco)toxicity tests has also been made for eight representatives of the new family of short aliphatic protic ILs, whose toxicity has not been determined experimentally to date. The QSAR model applied in this study can allow the selection of potentially less toxic ILs amongst the existing ones (e.g. in the case of aprotic ILs), but it can also be very helpful in directing the synthesis efforts toward developing new “greener” ILs respectful with the environment (e.g. short aliphatic protic ILs).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.