Abstract

The ability of the Weighted Holistic Invariant Molecular (WHIM) and GEometry, Topology, and Atom-Weights AssemblY (GETAWAY) descriptors to represent the effect of molecular structure on the retention of pesticides in reversed-phase high-performance liquid chromatography (RP-HPLC) is investigated. To this end, two retention data sets previously collected in water–acetonitrile mobile phase are re-examined. The first data set ( data-set-1) consists of retention data of 26 neutral compounds belonging to widely used pesticide classes, collected within the mobile phase composition range 40–65% (v/v) acetonitrile. The second data set ( data-set-2) describes retention of phenoxy acid herbicides and structurally related compounds (benzoic acid and phenylacetic acid derivatives), as a whole covering the p K a range 2.3–4.3, as a function of mobile phase composition, ranging between 30 and 70% (v/v) acetonitrile, and pH, ranging between 2 and 5. For each data set, the mobile phase attributes are combined with WHIM or GETAWAY descriptors into “mixed” predictive models in order to attempt retention modelling within the whole mobile phase composition range of analytical interest. Six- or seven-dimensional multilinear models, preliminarily selected using a genetic algorithm, were improved using a multi-layer artificial neural network (ANN) learned by back propagation. ANN performance was tested on three molecules not used in the learning stage and by leave-more-out cross validation. The results reveal that while WHIM descriptors seem not adequate to model retention of solutes of data-set-1, GETAWAY descriptors provide a satisfactory retention model. On the other hand WHIM and GETAWAY descriptors applied to data-set-2 provide a similar performance, even if slightly worse as compared with the above case. Accuracy of retention modelling in these cases is comparable or slightly poorer as compared with the results previously obtained by combining quantum chemical descriptors or usual physico-chemical solute properties (log k ow and p K a) and mobile phase attributes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.