Abstract

The positions of atoms in and around acetate molecules at the rutile TiO2(110) interface with 0.1 M acetic acid have been determined with a precision of ±0.05 Å. Acetate is used as a surrogate for the carboxylate groups typically employed to anchor monocarboxylate dye molecules to TiO2 in dye-sensitized solar cells (DSSC). Structural analysis reveals small domains of ordered (2 × 1) acetate molecules, with substrate atoms closer to their bulk terminated positions compared to the clean UHV surface. Acetate is found in a bidentate bridge position, binding through both oxygen atoms to two 5-fold titanium atoms such that the molecular plane is along the [001] azimuth. Density functional theory calculations provide adsorption geometries in excellent agreement with experiment. The availability of these structural data will improve the accuracy of charge transport models for DSSC.

Highlights

  • The interaction of carboxylic acids with TiO2 is important in a number of applications

  • We used ultra high vacuum (UHV) scanning tunneling microscopy (STM) to study the adsorption sites of carboxylates formed at aqueous interfaces, finding that the same sites are occupied as those identified in UHV adsorption.[3]

  • We move even closer to measurements in a technologically relevant environment, examining in a quantitative fashion the in situ structure of the TiO2(110) interface formed upon immersion in 0.1 M acetic acid using surface X-ray diffraction (SXRD)

Read more

Summary

■ INTRODUCTION

The interaction of carboxylic acids with TiO2 is important in a number of applications. We used UHV scanning tunneling microscopy (STM) to study the adsorption sites of carboxylates formed at aqueous interfaces, finding that the same sites are occupied as those identified in UHV adsorption.[3] Here we move even closer to measurements in a technologically relevant environment, examining in a quantitative fashion the in situ structure of the TiO2(110) interface formed upon immersion in 0.1 M acetic acid using surface X-ray diffraction (SXRD). This concentration is chosen to match that used in an infrared spectroscopy study of the TiO2 acetic acid interface, the results of which point to bidentate bonding of acetate.[3]. A discussion about the adequacy of this model to simulate the adsorption of molecules at this surface can be seen in ref 19

■ RESULTS AND DISCUSSION
■ ACKNOWLEDGMENTS
■ REFERENCES
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.