Abstract

A series of ruthenium azopyridine complexes have recently been investigated due to their potential cytotoxic activities against renal cancer (A498), lung cancer (H226), ovarian cancer (IGROV), breast cancer (MCF-7) and colon cancer (WIDR). Thus, in order to predict the cytotoxic potentials of these compounds, quantitative structure-activity relationship studies were carried out using the methods of quantum chemistry. Five Quantitative Structure Activity Relationship (QSAR) models were obtained from the determined quantum descriptors and the different activities. The models present the following statistical indicators: regression correlation coefficient R2 = 0.986 - 0.905, standard deviation S = 0.516 - 0.153, Fischer test F = 106.718 - 14.220, correlation coefficient of cross-validation = 0.985- 0.895 and = 0.010 - 0.001. The statistical characteristics of the established QSAR models satisfy the acceptance and external validation criteria, thereby accrediting their good performance. The models developed show that the variation of the free enthalpy of reaction , the dipole moment μ and the charge of the ligand in the complex Ql, are the explanatory and predictive quantum descriptors correlated with the values of the anti-cancer activity of the studied complexes. Moreover, the charge of the ligand is the priority descriptor for the prediction of the cytotoxicity of the compounds studied. Furthermore, QSAR models developed are statistically significant and predictive, and could be used for the design and synthesis of new anti-cancer molecules.

Highlights

  • A series of ruthenium azopyridine complexes have recently been investigated due to their potential cytotoxic activities against renal cancer (A498), lung cancer (H226), ovarian cancer (IGROV), breast cancer (MCF-7) and colon cancer (WIDR)

  • Five Quantitative Structure Activity Relationship (QSAR) models were obtained from the determined quantum descriptors and the different activities

  • The best QSAR models obtained for the various anti-cancer activities as well as

Read more

Summary

Introduction

A series of ruthenium azopyridine complexes have recently been investigated due to their potential cytotoxic activities against renal cancer (A498), lung cancer (H226), ovarian cancer (IGROV), breast cancer (MCF-7) and colon cancer (WIDR). These bidentate ligands can bind to Ru ion through RuCl3, 3H2O reactive by only the lone electron pairs of the nitrogen atoms of the pyridine ring and the azo group, thereby forming a 5-membered stable ring of chelation This reaction provides metal with excellent stability. The recent discovery of anticancer activity azopyridine complex ruthenium [6] [7] has increased interest of researchers to find out the origin of their cytotoxicity and mechanism of their reactivity on cancer cells so as to enhance it. (IGROV), breast cancer (MCF-7) and colon cancer (WIDR) [8] These molecules have shown promising anticancer activity. This would help to efficiently orient the synthesis of the ruthenium azopyridine complexes

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call