Abstract
Background: Coronavirus (CoV) is a group of viruses that cause disease in humans and animals. These viruses contain crown-shaped spike glycoproteins on their surface. Objective: We conducted a quantitative structure-activity relationship (QSAR) study on a series of 36 compounds of allicin to assess their antiviral activities against the main protease of COVID-19. Methods: In the present descriptive-analytic study, the information on the structure of compounds, the COVID-19 protease enzyme, and the Allicin derivatives was obtained from the databases such as the Research Collaboratory for Structural Bioinformatics’ Protein Data Bank (PDB) and PubChem. The QSAR method, analysis of correlations and multiple linear regressions were carried out. Six molecular descriptors such as constitutional and molecular topology descriptors were selected for the model. Finally, molecular docking was performed in iGEMDOCK 2.1 software. Results: The obtained multi-parametric model reported a correlation coefficient of about 0.89, indicating that the model was able to satisfactory predict the antiviral activity of allicin compounds. Conclusion: The findings obtained can be valuable in designing, synthesizing, and developing novel antiviral agents with allicin-based scaffold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Qazvin University of Medical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.