Abstract

A quantitative structure-activity relationship (QSAR) study of aromatic inhibitors against aldose reductase (AR) activity was performed using variable selection from stepwise multiple linear regression (MLR) and genetic algorithm (GA)-MLR. As a result of variable selection, stepwise MLR and GA-MLR gave the same results with one, two, three and five descriptors and different results with four and six descriptors. GA-MLR produced higher values and was better in explanatory and predictive power than stepwise MLR in four variables. AR activity (pIC50) of aromatic derivatives was expressed with acceptable explanatory (74.6-81.2%) and predictive power (68.8-74.4%) in models 3 and 4. The resulting models with the given descriptors illustrate that hydrophobic and electrostatic interactions play a significant role in inhibition of AR activity. This study suggests that the QSAR models can be used as guidelines to predict improved aldose reductase inhibitory activity and to obtain reliable predictions in structurally diverse compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.