Abstract

Chemical crosslinking, combined with mass spectrometry analysis, is a key source of information for characterizing the structure of large protein assemblies, in the context of molecular modeling. In most approaches, the interpretation is limited to simple spatial restraints, neglecting physico-chemical interactions between the crosslinker and the protein and their flexibility. Here we present a method, named NRGXL (new realistic grid for crosslinks), which models the flexibility of the crosslinker and the linked side-chains, by explicitly sampling many conformations. Also, the method can efficiently deal with overall protein dynamics. This method creates a physical model of the crosslinker and associated energy. A classifier based on it outperforms others, based on Euclidean distance or solvent-accessible distance and its efficiency makes it usable for validating 3D models from crosslinking data. NRGXL is freely available as a web server at: https://nrgxl.pasteur.fr.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.