Abstract

The objective of steganalysis is to detect messages hidden in cover objects, such as digital images. In practice, the steganalyst is frequently interested in more than whether or not a secret message is present. The ultimate goal is to extract and decipher the secret message. However, in the absence of the knowledge of the stego technique and the stego and cipher keys, this task may be extremely time consuming or completely infeasible. Therefore, any additional information, such as the message length or its approximate placement in image features, could prove very valuable to the analyst. In this paper, we present general principles for developing steganalytic methods that can accurately estimate the number of changes to the cover image imposed during embedding. Using those principles, we show how to estimate the secret message length for the most common embedding archetypes, including the F5 and OutGuess algorithms for JPEG, EzStego algorithm with random straddling for palette images, and the classical LSB embedding with random straddling for uncompressed image formats. The paper concludes with an outline of ideas for future research such as estimating the steganographic capacity of embedding algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.