Abstract

The authors prove a quantitative stability result for the Brunn-Minkowski inequality on sets of equal volume: If |A| = |B| > 0 and |A + B|1/n = (2+δ)|A|1/n for some small δ, then, up to a translation, both A and B are close (in terms of δ) to a convex set K. Although this result was already proved by the authors in a previous paper, the present paper provides a more elementary proof that the authors believe has its own interest. Also, the result here provides a stronger estimate for the stability exponent than the previous result of the authors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.