Abstract

In this paper, we consider quantitative stability analysis for two-stage stochastic linear programs when recourse costs, the technology matrix, the recourse matrix and the right-hand side vector are all random. For this purpose, we first investigate continuity properties of parametric linear programs. After deriving an explicit expression for the upper bound of its feasible solutions, we establish locally Lipschitz continuity of the feasible solution sets of parametric linear programs. These results are then applied to prove continuity of the generalized objective function derived from the full random second-stage recourse problem, from which we derive new forms of quantitative stability results of the optimal value function and the optimal solution set with respect to the Fortet–Mourier probability metric. The obtained results are finally applied to establish asymptotic behavior of an empirical approximation algorithm for full random two-stage stochastic programs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.