Abstract

Neuroendocrine tumors (NETs) are uncommon malignancies of increasing incidence and prevalence. As these slow growing tumors usually overexpress somatostatin receptors (SSTRs), the use of 68Ga-DOTA-peptides (gallium-68 chelated with dodecane tetra-acetic acid to somatostatin), which bind to the SSTRs, allows for PET based imaging and selection of patients for peptide receptor radionuclide therapy (PRRT). PRRT with radiolabeled somatostatin analogues such as 177Lu-DOTATATE (lutetium-177-[DOTA,Tyr3]-octreotate), is mainly used for the treatment of metastatic or inoperable NETs. However, PRRT is generally administered at a fixed injected activity in order not to exceed dose limits in critical organs, which is suboptimal given the variability in radiopharmaceutical uptake among patients. Advances in SPECT (single photon emission computed tomography) imaging enable the absolute quantitative measure of the true radiopharmaceutical distribution providing for PRRT dosimetry in each patient. Personalized PRRT based on patient-specific dosimetry could improve therapeutic efficacy by optimizing effective tumor absorbed dose while limiting treatment related radiotoxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call