Abstract

Heavy metal(loid)s are natural constituents of the Earth’s crust, and apportionment of their sources in surface soils is a challenging task. This study evaluated the application of positive matrix factorization (PMF) model, assisted with regression modeling and geospatial mapping, in the quantitative source apportionment of heavy metal(loid)s in the agricultural soils of Handan, a region covering >12,000 km2. Obvious enrichment of As, Cd, Cu, Pb, and Zn was found in the surface soils, with Cd alone accounted for 73 % of the overall potential ecological risk. PMF model revealed that Cd (56.9 %) and Pb (47.8 %) in the region’s agricultural soils were predominantly contributed by industrial sources, Fe (71.8 %), Cr (60.0 %), V (52.9 %), Cu (50.7 %), Ni (42.2 %), and Mn (41.4 %) were primarily of lithogenic origin, while Co (54.1 %), As (42.9 %), and Zn (40.0 %) mainly came from the mixed sources of natural background, agricultural sources, and vehicle emissions. Uncertainty analysis showed that the contributions of pollution sources to the soil heavy metal(loid)s estimated by PMF model had considerable variations. While quantitative source apportionment of heavy metal(loid)s in soils could be achieved with PMF based on their spatial distributions, combination with emission inventory and reactive transport are probably necessary to obtain more accurate results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.