Abstract

Subtractively normalized interfacial Fourier transform infrared reflection spectroscopy (SNIFTIRS) was applied to study (bi)sulfate adsorption on a Pt(111) surface in solutions of variable pH while maintaining a constant total bisulfate/sulfate ((bi)sulfate) concentration without the addition of an inert supporting electrolyte. The spectra were recorded for both the p- and s-polarizations of the IR radiation in order to differentiate between the IR bands of the (bi)sulfate species adsorbed on the electrode surface from those species located in the thin layer of electrolyte. The spectra recorded with p-polarized light consist of the IR bands from both the species adsorbed at the electrode surface and those present in the thin layer of electrolyte between the electrode surface and ZnSe window whereas the s-polarized spectra contain only the IR bands from the species located in the thin layer of electrolyte. A new procedure was developed to calculate the angle of incidence and thickness of the electrolyte between the Pt(111) electrode surface and the ZnSe IR transparent window. By combining these values with the knowledge of the optical constants for Pt, H(2)O and ZnSe, the mean square electric field strength (MSEFS) at the Pt(111) electrode surface and for thin layer of solution were accurately calculated. The spectra recorded using s-polarization were multiplied by the ratio of the average MSEFS for p- and s-polarizations and subtracted from the spectra recorded using p-polarization in order to remove the IR bands that arise from the species present within the thin layer cavity. In this manner, the resulting IR spectra contain only the IR bands for the anions adsorbed on the Pt(111) electrode surface. The spectra of adsorbed anions show little change with respect to the pH ranging from 1 to 5.6. This behavior indicates that the same species is predominantly adsorbed on the metal surface for this broad range of pH values and the results suggest that sulfate is the most likely candidate for this adsorbate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.