Abstract

Individuals who suffer from severe joint destruction caused by the various arthritidies often undergo total joint arthroplasty. A major limitation of this treatment is the development of aseptic loosening of the prosthesis in as many as 20% of patients. The current paradigm to explain aseptic loosening proposes that wear debris generated from the prosthesis initiates a macrophage-mediated inflammatory response by resident macrophages, leading to osteoclast activation and bone resorption at the implant interface. No therapeutic interventions have been proved to prevent or inhibit aseptic loosening. The development of therapeutic strategies is limited due to the absence of a quantitative surrogate in which drugs can be screened rapidly in large numbers of animals. We have previously described a model in which titanium particles implanted on mouse calvaria induce an inflammatory response with osteolysis similar to that observed in clinical aseptic loosening. Here, we present new methods by which the osteolysis in this model can be quantified. We determined that 6-8-week-old mice in normal health have a sagittal suture area of 50 (+/-6) microm2, which contains approximately five osteoclasts. As a result of the titanium-induced inflammation and osteolysis, the sagittal suture area increases to 197 (+/-27) microm2, with approximately 30 osteoclasts, after 10 days of treatment. The sagittal suture area and the number of osteoclasts in the calvaria of sham-treated mice remained unchanged during the 10 days. We also determined the effects of pentoxifylline, a drug that blocks the responses of tumor necrosis factor-alpha to wear debris, and the osteoclast inhibitor alendronate. We found that both drugs effectively block wear debris-induced osteolysis but not osteoclastogenesis. In conclusion, we found the measurements made with this model to be reproducible and to permit quantitative analysis of agents that are to be screened for their potential to prevent aseptic loosening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.