Abstract

Spider silk has extraordinary mechanical properties, displaying high tensile strength, elasticity, and toughness. Given the high performance of natural fibers, one of the long-term goals of the silk community is to manufacture large-scale synthetic spider silk. This process requires vast quantities of recombinant proteins for wet-spinning applications. Attempts to synthesize large amounts of native size recombinant spidroins in diverse cell types have been unsuccessful. In these studies, we design and express recombinant miniature black widow MaSp1 spidroins in bacteria that incorporate the N-terminal and C-terminal domain (NTD and CTD), along with varying numbers of codon-optimized internal block repeats. Following spidroin overexpression, we perform quantitative analysis of the bacterial proteome to identify proteins associated with spidroin synthesis. Liquid chromatography with tandem mass spectrometry (LC MS/MS) reveals a list of molecular targets that are differentially expressed after enforced mini-spidroin production. This list included proteins involved in energy management, proteostasis, translation, cell wall biosynthesis, and oxidative stress. Taken together, the purpose of this study was to identify genes within the genome of Escherichia coli for molecular targeting to overcome bottlenecks that throttle spidroin overexpression in microorganisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call