Abstract

Chemo-responsive shape memory effect in polyurethane shape memory polymer (SMP) composite triggered by mass migration of copper (II) chloride (CuCl2) has been experimentally demonstrated. In this study, we present a comprehensive study on quantitative separation of the effect of CuCl2 particle mass migration on the chemo-responsive shape recovery behavior of polyurethane SMP composites with different concentrations of CuCl2 particles. It is found that the SMP is featured with a critical release rate of the mechanical energy storage associated with the shape recovery behavior due to mass migration of the CuCl2 particle. A sequence of molecular interactions among CuCl2 particles, polyurethane macromolecules and water molecules, i.e., assembly of the CuCl2 particle with polyurethane macromolecules, and then disassembly and dissolution of the CuCl2 particle in water, results in an acceleration of water-induced shape recovery of polyurethane SMP. This study focuses on the quantitative separation of the influence of mass migration on the chemo-responsive shape recovery behavior of polyurethane SMP in response to water. It is expected to promote and achieve the actuation of chemo-responsive SMPs in a fully controllable manner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.