Abstract

Quantitative estimates of reservoir parameters and elastic anisotropy using seismic methods is essential for characterizing shale oil reservoirs. Rock physics models were established to quantify elastic anisotropy associated with clay properties, laminated microstructures, and bedding fractures at different scales in shale. The inversion schemes based on the built rock physics models were proposed to estimate reservoir parameters and elastic anisotropy using well log data. Based on the back propagation neural network framework, the obtained rock physical inversion results were used to establish the nonlinear models between elastic properties and reservoir parameters and elastic anisotropy of shale. The established correlations were applied for quantitative seismic interpretation, converting seismic inversion results to the reservoir parameters and elastic anisotropy to characterize the shale oil reservoir comprehensively. The predicted elastic anisotropy of the shale matrix reflects the lamination degree and the mechanical properties of the shale, which is critical for the effective implementation of hydraulic fracturing. The calculated elastic anisotropy of the shale provides more accurate models for seismic modeling and inversion. The obtained bedding fracture parameters provide insights into reservoir permeability. Therefore, the proposed method provides valuable information for identifying favorable oil zones in the study area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call