Abstract

Modern marine seismic reflection data have allowed for the study of the morphology of submarine channels in a 3D perspective. This study presents a quantitative analysis of continental slope channel complexes morphology within the Canterbury Basin (New Zealand). It aims to characterize the morphology and seismic facies of submarine channels to better understand their formative sedimentary processes, paleoenvironment, and petroleum prospectivity. Submarine channel morphometric parameters are measured at 150 m intervals perpendicular to the axis of channels complexes. Based on the morphology analysis of erosional surfaces and seismic facies of channel complexes filling deposits, four types of continental slope channel complexes are found in the study area. These are vertical migrating channels, lateral migrating channels, V-shaped channels, and U-shaped channels. Furthermore, our work shows that channel morphometry varies over distances of 0.1 to 14 km in this continental slope system. These changes indicate a combination of submarine gravity flow process and channel wall collapse responsible for the development of continental slope channel complexes. Regionally, the evolution of the channels indicated less significant regional plate movement. This quantitative seismic geomorphology approach of characterizing submarine channels system has broader applications for better interpretation of paleoenvironment and petroleum prospectivity within frontier basins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call