Abstract
Subsethood measures, also known as set-inclusion measures, inclusion degrees, rough inclusions, and rough-inclusion functions, are generalizations of the set-inclusion relation for representing graded inclusion. This paper proposes a framework of quantitative rough sets based on subsethood measures. A specific quantitative rough set model is defined by a particular class of subsethood measures satisfying a set of axioms. Consequently, the framework enables us to classify and unify existing generalized rough set models (e.g., decision-theoretic rough sets, probabilistic rough sets, and variable precision rough sets), to investigate limitations of existing models, and to develop new models. Various models of quantitative rough sets are constructed from different classes of subsethood measures. Since subsethood measures play a fundamental role in the proposed framework, we review existing methods and introduce new methods for constructing and interpreting subsethood measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.