Abstract

Since the massive use and production of fuel oil and natural gas, the excavating locations of buried energy-carrying material are moving further away from onshore, eventually requiring floating production systems like floating production, storage and offloading (FPSO). Among those platforms, LNG-FPSO will play a leading role to satisfy the global demands for the natural gas in near future; the LNG-FPSO system is designed to deal with all the LNG processing activities, near the gas field. However, even a single disaster on an offshore plant would put the whole business into danger. In this research, the risk of fire and explosion in the LNG-FPSO is assessed by quantitative risk analysis, including frequency and consequence analyses, focusing on the LNG liquefaction process (DMR cycle). The consequence analysis is modeled by using a popular analysis tool PHAST. To assess the risk of this system, 5 release model scenarios are set for the LNG and refrigerant leakages from valves, selected as the most probable scenarios causing fire and explosion. From the results, it is found that the introduction of additional protection methods to reduce the effect of fire and explosion under ALARP criteria is not required, and two cases of the selection of independent protection layers are recommended to meet the SIL level of failure rate for safer design and operation in the offshore environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call