Abstract

Diffusion tensor imaging and high angular resolution diffusion imaging are often used to analyze the fiber complexity of tissues. In these imaging techniques, the most commonly calculated metric is anisotropy, such as fractional anisotropy (FA), generalized anisotropy (GA), and generalized fractional anisotropy (GFA). The basic idea underlying these metrics is to compute the deviation from free or spherical diffusion. However, in many cases, the question is not really to know whether it concerns spherical diffusion. Instead, the main concern is to describe and quantify fiber complexity such as fiber crossing in a voxel. In this context, it would be more direct and effective to compute the deviation from a single fiber bundle instead of a sphere. We propose a new metric, called PEAM (PEAnut Metric), which is based on computing the deviation of orientation diffusion functions (ODFs) from a single fiber bundle ODF represented by a peanut. As an example, the proposed PEAM metric is used to classify intravoxel fiber configurations. The results on simulated data, physical phantom data and real brain data consistently showed that the proposed PEAM provides greater accuracy than FA, GA and GFA and enables parallel and complex fibers to be better distinguished.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.