Abstract

To investigate the quantitative relationship between glucose and sodium reabsorption during extracellular fluid (ECF) expansion and to examine the possible contribution to glucosuria of passive diffusion of glucose from peritubular blood to tubular fluid, renal clearance studies were carried out in dogs. It was found that ECF expansion with isotonic saline or Ringer solution causes a decrease in the maximal rate of glucose reabsorption (TmGlc), which is inversely and linearly related to fractional sodium excretion (FENa) over a range from less than 1% more than 25% FENa (r equals -0.394, P less than 0.001). A continuous relationship between TmGlc and FENa could be demonstrated as the ECF was expanded in individual animals as well as in pooled data. Infusion of albumin solution to preferentially expand the plasma volume and decrease proximal tubular sodium reabsorption produced a 24% fall in TmGlc suggesting that the proximal tubule is the site of interrelated glucose and sodium reabsorption. After pulse injections into the renal artery, [14-C]glucose and insulin had the same appearance time in the urine, thus failing to demonstrate diffusion of glucose from blood into the tubule in saline-loaded dogs as well as in dogs in normal sodium balance. It is suggested that ECF expansion exerts its effect on glucose reabsorption by inhibiting the coupled transport of glucose and sodium across the epithelium of the renal proximal tubule.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call