Abstract
The formation of soil organo-mineral complexes is a key reaction in the carbon cycle in soil, since organic materials acquire a resistance to decomposition due to the formation of the complexes. Adsorption of dissolved organic matter (DOM) onto soil minerals provides a model of this important process. Adsorption of DOM onto samples from Andisols, Inceptisols, and Entisols in batch experiments was compared in terms of the quantitative relationship between the soil properties and the adsorption behavior of DOM. Adsorption behavior was effectively described by a linear initial mass (IM) isotherm, indicating that the adsorption efficiency did not appreciably decline in the range studied even though a large amount of DOM was applied to the soil samples. Samples from Andisols showed a particularly high efficiency of adsorption compared with those from other soils which contained a comparable amount of organic carbon. Explanatory variables useful to predict the efficiency parameter were investigated in 2 steps: firstly the degree of carbon accumulation in the soil samples was examined, and next an index for the amount of ligand exchange sites was examined in combination with the former indices. As a result, an index comprising the total carbon/clay (or total carbon/specific surface area) ratio and the amount of hydroxy ions in the soil extracts with NaF solution was eventually detected. The former represents the degree of carbon occupation on the soil surface, and the latter the amount of ligand exchange sites on labile aluminum. Although the mechanisms involved in the adsorption varied among soils, the selected index was significantly correlated with the adsorption efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.