Abstract

Molecular dynamic simulations of aqueous mixtures of imidazolium ionic liquids (ILs) were performed to elucidate the dependence of the ionic diffusivity on the microscopic structures changed by water. Two distinct regimes of the average ionic diffusivity (Dave) were identified with the increased water concentrations: the jam regime with slowly increased Dave and the exponential regime with rapidly increased Dave, which are found to be directly correlated to the ionic association. Further analysis leads to two general relationships independent of IL species between Dave and the degree of ionic association: (i) a consistent linear relationship between Dave and the inverse of ion-pair lifetimes (1/τIP) in the two regimes and (ii) an exponential relationship between normalized diffusivities (D̃ave) and short-ranged interactions between cations and anions (Ẽions), with different interdependent strengths in the two regimes. These findings revealed and quantified the direct correlation between dynamic properties and ionic association in IL-water mixtures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.