Abstract

Therapeutic approaches to cerebral edema require an understanding of both the magnitude and location of changes in brain water content. It is desirable to have a sensitive, accurate means of measuring brain water noninvasively so that effective therapies for cerebral edema in stroke, head trauma, and other conditions can be investigated. In this work, a three-dimensional magnetic resonance imaging technique that is able to provide both spin density and T1 simultaneously is described. This method was used to quantitate regional changes in brain water content in a rat model of focal cerebral ischemia. Brain water contents estimated from both relative spin density and relative T1 measurements made in vivo were compared with ex vivo measurements of relative tissue water content based on the wet-dry technique. Correlation coefficients of 0.95 and 0.98 were obtained between the wet-dry measurements and magnetic resonance measurements of T1 and spin density, respectively. Notably, the slope of the relationship between T1 and tissue water content changed dramatically after the injection of a paramagnetic contrast agent while precontrast and postcontrast spin density measurements remained essentially invariant. In addition, a plot of absolute spin density (obtained by normalizing spin density from agar gelatin phantoms of different water contents to the spin density of a sample of 100% water) was linearly related to wet-dry measurements with a slope of 0.99 (R2 = 0.99).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call