Abstract
Abstract We present a novel method to reconstruct the pressure conditions responsible for the formation of fluid escape pipes in sedimentary basins. We analyzed the episodic venting of high-pressure fluids from the crests of a large anticlinal structure that formed off the coast of Lebanon in the past 1.7 m.y. In total, 21 fluid escape pipes formed at intervals of 50–100 k.y. and transected over 3 km of claystone and evaporite sealing units to reach the seabed. From fracture criteria obtained from nearby drilling, we calculated that overpressures in excess of 30 MPa were required for their formation, with pressure recharge of up to 2 MPa occurring after each pipe-forming event, resulting in a sawtooth pressure-time evolution. This pressure-time evolution is most easily explained by tectonic overpressuring due to active folding of the main source aquifer while in a confined geometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.