Abstract
Quantitative reconstruction of dielectric properties has enabled a wealth of biomedical applications. Although traditional microwave imaging and microwave-induced thermoacoustic tomography (MITAT) techniques have been widely explored for quantitative reconstruction, it is still highly challenging for them to deal with biological samples with high permittivity and conductivity. This work leverages deep-learning-enabled MITAT (DL-MITAT) approach to quantitatively reconstruct dielectric properties of biological samples with high quality. We construct a new network structure to separately reconstruct the permittivity and conductivity. By simulation and experimental testing, we demonstrate that the DL-MITAT technique is able to reliably reconstruct inhomogeneous biological samples with tumor, muscle, and fat. The experimental reconstruction error is only 5%. The network exhibits excellent generalization capability in terms of sample’s geometry. This work provides a useful paradigm and alternative way for quantitative reconstruction of dielectric properties and paves the way toward practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Microwave Theory and Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.