Abstract

Alzheimer's disease (AD) is a neurodegenerative disease with well-characterized pathological features. Yet the underlying mechanisms have not been resolved and an effective therapeutic approach is lacking. Cerebral hypoxia is considered a risk factor of AD. We tested whether oxygen supplementation can relieve AD symptoms and how it affects the expression levels of proteins in the lens. Triple transgenic AD model (3xTg-AD) mice were divided into oxygen treated (OT) and control (Ctrl) groups. Their cognitive performances were tested in a Morris water maze (MWM) paradigm. Then, their eye lens tissues were subjected to quantitative proteomics analysis by the iTRAQ (isobaric tags for relative and absolute quantification) method. The up- and downregulated proteins were classified according to a Gene Ontology (GO) database in PANTHER. Behavioral and proteomic data were compared between the groups. Mice in the OT group had better learning and memorizing performance compared with the Ctrl group in MWM test. Lenses from the OT group had 205 differentially regulated proteins, relative to lenses from the Ctrl group, including proteins that are involved in the clearance of amyloid β-protein. The results of this study indicate that oxygen treatment can improve cognitive function in AD model mice and alters protein expression in a manner consistent with improved redox regulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.