Abstract

Activated astrocytes are known to clear the Aβ deposited in the extracellular milieu, which is why they play a key role in regulating the progression of Alzheimer's disease (AD). However, the molecular mechanism underlying astrocyte-mediated Aβ phagocytosis and degradation remains unclear. By performing tandem mass tag-based quantitative proteomic analysis, we identified 47 proteins that were differentially expressed in APP/PS1 double-transgenic. To our knowledge, this is the first time most of these proteins have been reported to exhibit altered expression in the mouse model of AD. Furthermore, our results indicate that one of the proteins upregulated in the APP/PS1 mouse, PEA15 (phosphoprotein enriched in astrocytes 15 kDa), regulates astroglial phagocytosis of Aβ. Our findings provide new insights into the molecular mechanism underlying Aβ clearance in AD. The altered profile of protein expression in APP/PS1 mice described here should offer valuable clues to understand the pathogenesis of AD and facilitate the identification of potential targets for the treatment of AD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.