Abstract
A series of protein kinases and phosphatases (PKPs) have been linked to contextual fear conditioning (cFC) but information is mainly derived from immunochemical studies. It was therefore decided to use an explorative label-free quantitative proteomics approach to concomitantly determine PKPs in hippocampi of mice in the individual phases of cFC. C57BL/6J mice were divided into four groups: three training groups representing the acquisition, consolidation and retrieval phases of cFC and a foot shock control group. Using this approach we identified 32 protein kinases or phosphatases/phosphatase subunits with significantly changed protein levels in one or more training groups as compared to foot shock control. These include members of PKP signalling modules of mitogen-activated protein kinase (MAP3K10, RAF1, KSR2), Ca2+/calmodulin-dependent protein kinase (CaMKIIα, DAPK1), protein kinase C (PRKCD) and protein phosphatases 1, 2A, 2B(3) previously implicated in various learning paradigms. In addition, our analysis showed protein kinases WNK1, LYN, VRK1, ABL1, CDK4, CDKL3, SgK223 and ADCK1, and protein phosphatases PTPRF, ACP1, DNAJC6, SSH2 and UBASH3B that have not been directly linked to fear memory processes so far. Determination of PKPs in the individual cFC phases represents a valuable resource for interpretation of previous and design of future studies on PKPs in memory mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.