Abstract
Tendinopathy refers to a type of tendon disease with a multifactorial spectrum. Recent research has begun to reveal the effects of inflammation on the tendinopathic process, especially in the first stage of tendinopathy. Radial extracorporeal shock wave therapy (rESWT) has been successfully used to treat orthopedic diseases. However, the molecular mechanisms underlying the anti-inflammatory effects of rESWT on tumor necrosis factor-α treated tenocytes have not been fully elucidated. In this study, we applied total protein tandem mass tag-labeled quantitative proteomics with liquid chromatography-mass spectrometer/mass spectrometer technology to identify differentially expressed proteins (DEPs) among inflammatory tenocytes, rESWT inflammatory tenocytes, and controls using three biological replicates. Human tenocytes were used and they were cultured in vitro. In total, 1028 and 40 DEPs were detected for control versus inflammatory tenocytes and for inflammatory tenocytes versus rESWT inflammatory tenocytes, respectively. Further, we identified integrin α2, selenoprotein S, and NLR family CARD domain-containing protein 4 as pivotal molecular targets of the anti-inflammatory effects of rESWT. This is the first study to provide a reference proteomic map for inflammatory tenocytes and rESWT inflammatory tenocytes. Our findings provide crucial insight into the molecular mechanisms underscoring the anti-inflammatory effects of rESWT in tendinopathy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.