Abstract

A lack of validated blood diagnostic markers presents an obstacle to asthma control. The present study sought to profile the plasma proteins of children with asthma and to determine potential biomarkers. Plasma samples from children in acute exacerbation (n=4), in clinical remission (n=4), and from healthy children (n=4, control) were analyzed using a tandem mass tag (TMT)-labeling quantitative proteomics and the candidate biomarkers were validated using liquid chromatography-parallel reaction monitoring (PRM)/mass spectrometry (MS) with enzyme-linked immunosorbent assay (ELISA). We identified 347 proteins with differential expression between groups: 125 (50 upregulated, 75 downregulated) between acute exacerbation and control, 142 (72 upregulated, 70 downregulated) between clinical remission and control, and 55 (22 upregulated, 33 downregulated) between acute and remission groups (all between-group fold changes>1.2; P<0.05 by Student's t-test). Gene ontology analysis implicated differentially expressed proteins among children with asthma in immune response, the extracellular region, and protein binding. Further, KEGG pathway analysis of differentially expressed proteins identified complement and coagulation cascades and Staphylococcus aureus infection pathways as having the highest protein aggregation. Our analyses of protein interactions identified important node proteins, particularly KRT10. Among 11 differentially expressed proteins, seven proteins (IgHD, IgHG4, AACT, IgHA1, SAA, HBB, and HBA1) were verified through PRM/MS. Protein levels of AACT, IgA, SAA, and HBB were verified through ELISA and may be useful as biomarkers to identify individuals with asthma. In conclusion, our study presents a novel comprehensive analysis of changes in plasma proteins in children with asthma and identifies a panel for accessory diagnosis of pediatric asthma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call