Abstract

Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays an important role in cholesterol homeostasis, mediating degradation of the liver low-density lipoprotein receptor (LDLR). In fact, gain- and loss-of-function PCSK9 variations in human populations associate with hyper- or hypo- cholesterolemia, respectively. Exactly how PCSK9 promotes degradation of the LDLR, the identity of the other biomolecules involved in this process, and the global effect of PCSK9 on other proteins has not been thoroughly studied. Here we employ stable isotope labeling with amino acids in cell culture (SILAC) to present the first quantitative, subcellular proteomic study of proteins affected by the stable overexpression of a gain-of-function PCSK9 membrane-bound chimera (PCSK9-V5-ACE2) in comparison to control, empty vector transfections in a human hepatocyte (HuH7) cell line. The expression level of 327 of 5790 peptides was modified by PCSK9-V5-ACE2 overexpression. Immunoblotting was carried out for the control transferrin receptor, shown to be unaffected in cells overexpressing PCSK9-V5-ACE2, thus validating our SILAC results. We also used immunoblotting to confirm the novel SILAC results of up- and down-regulation of several proteins in cells overexpressing PCSK9-V5-ACE2. Moreover, we documented the novel down-regulation of the EH domain binding protein-1 (EHBP1) in a transgenic PCSK9 mouse model and its up-regulation in a PCSK9 knockout mouse model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.