Abstract

The purple phototrophic bacteria elaborate a specialized intracytoplasmic membrane (ICM) system for the conversion of solar energy to ATP. Previous radiolabelling and ultrastructural experiments have shown that ICM assembly in Rhodobacter sphaeroides is initiated at indentations of the cytoplasmic membrane, termed UPB. Here, we report proteomic analyses of precursor (UPB) and mature (ICM) fractions. Qualitative data identified 387 proteins, only 43 of which were found in the ICM, reflecting its specialized role within the cell, the conversion of light into chemical energy; 236 proteins were found in the significantly more complex UPB proteome. Metabolic labelling was used to quantify the relative distribution of 173 proteins between the UPB and ICM fractions. Quantification reveals new information on assembly of the RC-LH1-PufX, ATP synthase and NAD(P)H transhydrogenase complexes, as well as showing that the UPB is enriched in enzymes for lipid, carbohydrate and amino acid metabolism, tetrapyrrole biosynthesis and proteins representing a wide range of other metabolic and biosynthetic functions. Proteins involved in light harvesting, photochemistry, electron transport and ATP synthesis are all enriched in ICM, consistent with the spatial proximity of energy capturing and transducing functions. These data provide further support to the developmental precursor-product relationship between UPB and ICM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.