Abstract

Objective To detect the protein expression change in the proliferation of human retinal microvascular endothelial cells (hRMECs) stimulated with 4-Hydroxynonenal (4-HNE). Methods hRMECs were in a logarithmic growth phase, and then were separated into 4-HNE-stimulated group and negative control group. The concentration of 4-HNE included 5, 10, 20 and 50 μmol/L in 4-HNE-stimulated group, while the negative control group was added in the same volume of ethanol (the solvent of 4-HNE). Then the cells were stimulated with 4-HNE for 24 hours following by CCK-8 kits incubating for 4 hours to detect absorbance. It was found that 10 μmol/L 4-HNE had the most obvious effect on the proliferation of hRMECs. Therefore, the cellular proteins from 10 μmol/L 4-HNE-stimulated group and negative control group were acquired and prepared by FASP sample preparation method. Data independent acquisition was used for data acquisition, and the GO analysis and pathway enrichment were performed for analysis of differentially expressed proteins. Results CCK-8 kits detection results showed that the A value of the 10 and 20 μmol/L 4-HNE-stimulated groups were significantly higher than negative control group and 5 μmol/L 4-HNE-stimulated group (F=25.42, P 1.5, P<0.05). Seventy-two proteins were up-regulated after 4-HNE stimulation, whereas 46 proteins were down-regulated. Particularly, the expressions of Heme oxygenase-1, Sulfoxdoxin-1, Heat shock protein A1B, Thioredoxin reductase-1, Glutathione reductase, ATPase and prothrombin were increased when cells were added in 4-HNE, whereas the expressions of apolipoprotein A1 and programmed cell death protein 4 were decreased. These differentially expressed proteins were mainly involved in the biological processes such as oxidative stress, cell detoxification, and ATPase-coupled membrane transport. Conclusion After stimulated with 4-HNE, the oxidative stress, cell detoxification, and ATPase-coupled membrane transport protein expression may change in hRMECs in order to regulate oxidative stress and growth situation. Key words: Reitinal vessels/cytology; Endothelial; Cell cultured; Proteomics; 4- Hydroxynonenal

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call