Abstract

Drought stress is a recurring feature of world climate and the single most important factor influencing agricultural yield worldwide. Plants display highly variable, species-specific responses to drought and these responses are multifaceted, requiring physiological and morphological changes influenced by genetic and molecular mechanisms. Moreover, the reproducibility of water deficit studies is very cumbersome, which significantly impedes research on drought tolerance, because how a plant responds is highly influenced by the timing, duration, and intensity of the water deficit. Despite progress in the identification of drought-related mechanisms in many plants, the molecular basis of drought resistance remains to be fully understood in trees, particularly in poplar species because their wide geographic distribution results in varying tolerances to drought. Herein, we aimed to better understand this complex phenomenon in eastern cottonwood (Populus deltoides) by performing a detailed contrast of the proteome changes between two different water deficit experiments to identify functional intersections and divergences in proteome responses. We investigated plants subjected to cyclic water deficit and compared these responses to plants subjected to prolonged acute water deficit. In total, we identified 108,012 peptide sequences across both experiments that provided insight into the quantitative state of 22,737 Populus gene models and 8,199 functional protein groups in response to drought. Together, these datasets provide the most comprehensive insight into proteome drought responses in poplar to date and a direct proteome comparison between short period dehydration shock and cyclic, post-drought re-watering. Overall, this investigation provides novel insights into drought avoidance mechanisms that are distinct from progressive drought stress. Additionally, we identified proteins that have been associated as drought-relevant in previous studies. Importantly, we highlight the RD26 transcription factor as a gene regulated at both the transcript and protein level, regardless of species and drought condition, and, thus, represents a key, universal drought marker for Populus species.

Highlights

  • Plants frequently experience unfavorable environmental conditions that negatively influence biomass production

  • To better explore the complexity of the proteome changes induced by the different water deficit conditions, we reduced functional redundancy within the list of over-represented gene ontology (GO) terms using GO term fusion, an advanced setting in ClueGO that identifies terms in parent-child relationship that share similar genes and retains the most representative parent or child GO term

  • We highlight the dynamic changes of proteins across two different water deficit treatments

Read more

Summary

Introduction

Plants frequently experience unfavorable environmental conditions that negatively influence biomass production. Periodic water deficiency is one of the most adverse environmental factors affecting plant growth and is responsible for approximately 70% of the potential agricultural yield loss worldwide [1]. Plants experience different severities of water deficit that vary due to temperature and seasonal precipitation. Plant perception of stress and the intrinsic response depends on species as well as the severity and duration of the water deficit [2]. The duration and frequency of water availability due to precipitation translates to soil moisture deficit that initiates stomatal closure and limits gas exchange in leaves. If water deficit is extensive, prolonged desiccation will lead to gross disruption of whole-plant metabolism, eventual leaf senescence, and even plant death

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call