Abstract

Characterizing the shape of sub-100 nm, biological soft-matter particulates (e.g., liposomes and exosomes) adsorbed at a solid-liquid interface remains a challenging task. Here, we introduce a localized surface plasmon resonance (LSPR) sensing approach to quantitatively profile the deformation of nanoscale, fluid-phase 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes contacting a titanium dioxide substrate. Experimental and theoretical results validate that, due to its high sensitivity to the spatial proximity of phospholipid molecules near the sensor surface, the LSPR sensor can discriminate fine differences in the extent of ionic strength-modulated liposome deformation at both low and high surface coverages. By contrast, quartz crystal microbalance-dissipation (QCM-D) measurements performed with equivalent samples were qualitatively sensitive to liposome deformation only at saturation coverage. Control experiments with stiffer, gel-phase 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes verified that the LSPR measurement discrimination arises from the extent of liposome deformation, while the QCM-D measurements yield a more complex response that is also sensitive to the motion of adsorbed liposomes and coupled solvent along with lateral interactions between liposomes. Collectively, our findings demonstrate the unique measurement capabilities of LSPR sensors in the area of biological surface science, including competitive advantages for probing the shape properties of adsorbed, nanoscale biological particulates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call