Abstract

A sensitive and specific liquid chromatography–tandem mass spectrometry (LC–MS/MS) method is described for the simultaneous identification and quantification of eight endocannabinoid (EC) or related “entourage” compounds in rat brain tissue. Analytes were extracted and purified from rat brain tissue using an ethyl acetate/hexane solvent extraction, followed by a solid phase extraction (SPE) protocol. Chromatographic separation was achieved using a gradient elution, with a mobile phase of acetonitrile, formic acid, and ammonium acetate, at pH 3.6. A Thermo Hypersil C8 HyPurity Advance column (100 × 2.1 mm i.d., 3 μm) was used with a flow rate of 0.3 ml/min). Anandamide (AEA), 2-arachidonyl glycerol (2-AG), 2-arachidonylglyceryl ether (noladin ether), O-arachidonyl ethanolamide (virodhamine), 2-linoleoyl glycerol (2-LG), arachidonyl glycine, oleoyl ethanolamide (OEA), and palmitoyl ethanolamide (PEA) were quantified by positive ion tandem electrospray ionization mass spectrometry. Internal standards were deuterated AEA, deuterated 2-AG, and heptadecanoyl ethanolamide (HEA). Linearity was proven over the range of 25 fmol to 250 pmol, with a limit of detection of 25 fmol on column for all analytes except 2-AG, noladin ether, and 2-LG (250 fmol). This corresponded to a limit of quantification in biological tissue of 10 pmol/g for all analytes except 2-AG (100 pmol/g). Intra- and interday precision in biological tissue was routinely approximately 20% or lower, and accuracy was between 65% and 155%. This method was used to quantitatively profile regional differences in nine discrete rat brain regions for AEA, 2-AG, 2-LG, OEA, PEA, noladin ether, virodhamine, and arachidonyl glycine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call