Abstract
With the recent advanced direct RNA sequencing technique that proposed by the Oxford Nanopore Technologies, RNA modifications can be detected and profiled in a simple and straightforward manner. Majority nanopore-based modification studies were devoted to those popular types such as m6A and pseudouridine. To address current limitations on studying the crucial regulator, m1A modification, we conceived this study. We have developed an integrated computational workflow designed for the detection of m1A modifications from direct RNA sequencing data. This workflow comprises a feature extractor responsible for capturing signal characteristics (such as mean, standard deviations, and length of electric signals), a single molecule-level m1A predictor trained with features extracted from the IVT dataset using classical machine learning algorithms, a confident m1A site selector employing the binomial test to identify statistically significant m1A sites, and an m1A modification rate estimator. Our model achieved accurate molecule-level prediction (Average AUC = 0.9689) and reliable m1A site detection and quantification. To show the feasibility of our workflow, we conducted a study on in vivo transcribed human HEK293 cell line, and the results were carefully annotated and compared with other techniques (i.e., Illumina sequencing-based techniques). We believed that this tool will enabling a comprehensive understanding of the m1A modification and its functional mechanisms within cells and organisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.