Abstract

The “dual constraint” model developed by Mead, Van Dyke et al. is here extended by inclusion of “early-time” contour-length fluctuations and constraint-release Rouse relaxation, and then evaluated by comparing its predictions with literature data for over 50 different linear and star polymers. By combining the reptation model of Doi and Edwards with contour-length fluctuations and constraint release, the model provides a systematic approach to prediction of the rheological properties of polymers. The parameters are taken from the literature and used consistently for linear polymers, star polymers, and their mixtures having the same chemical compositions. In most cases, the predictions of the model appears to agree well with data for monodisperse, bidisperse, and polydisperse linear and star polymers, except at low molecular weights.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.