Abstract
We address the problem of the quantitative prediction of micelle formation in dilute aqueous solutions of ionic surfactants using sodium dodecyl sulfate (SDS) as a model system through a computational approach that involves three steps: (a) execution of coarse-grained simulations based on the MARTINI force field (with slightly modified parameters to afford the formation of large micelles); (b) reverse mapping of the final self-assembled coarse-grained configuration into an all-atom configuration; and (c) final relaxation of this all-atom configuration through short-time (on the order of a few tens of nanoseconds), detailed isothermal-isobaric molecular dynamics simulations using the CHARMM36 force field. For a given concentration of the solution in SDS molecules, the modified MARTINI-based coarse-grained simulations lead to the formation of large micelles characterized by mean aggregation numbers above the experimentally observed ones. However, by reintroducing the detailed chemical structure through a strategy that solves a well-defined geometric problem and re-equilibrating, these large micellar aggregates quickly dissolve to smaller ones and equilibrate to sizes that perfectly match the average micelle size measured experimentally at the given surfactant concentration. From the all-atom molecular dynamics simulations, we also deduce the surfactant diffusivity DSDS and the zero-shear rate viscosity, η0, of the solution, which are observed to compare very favorably with the few experimental values that we were able to find in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.