Abstract

Drug-drug interactions (DDIs) can affect the clearance of various drugs from the body; however, these effects are difficult to sufficiently evaluate in clinical studies. This article outlines our approach to improving methods for evaluating and providing drug information relative to the effects of DDIs. In a previous study, total exposure changes to many substrate drugs of CYP caused by the co-administration of inhibitor or inducer drugs were successfully predicted using in vivo data. There are two parameters for the prediction: the contribution ratio of the enzyme to oral clearance for substrates (CR), and either the inhibition ratio for inhibitors (IR) or the increase in clearance of substrates produced by induction (IC). To apply these predictions in daily pharmacotherapy, the clinical significance of any pharmacokinetic changes must be carefully evaluated. We constructed a pharmacokinetic interaction significance classification system (PISCS) in which the clinical significance of DDIs was considered in a systematic manner, according to pharmacokinetic changes. The PISCS suggests that many current 'alert' classifications are potentially inappropriate, especially for drug combinations in which pharmacokinetics have not yet been evaluated. It is expected that PISCS would contribute to constructing a reliable system to alert pharmacists, physicians and consumers of a broad range of pharmacokinetic DDIs in order to more safely manage daily clinical practices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.